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span the range of planar, cellular, dendritic, and segregationless
(microcrystalline).solidification, the latter being achieved by critical or
hypercritical undercooling. The need for careful characterization of RSP
microstructures is emphasized, and important scientific challenges for
advancing the field of RSP are stressed.,4.-
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Fig. 1. A schematic representation of materials science and
engineering.
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role in detcri;,ining whether or not hypercooling or novel microstructures can be
attained Instead of, say, refined dendritic microstrucitures. A transition ran .
between these two modes of solidification is shown schematically in Fig. 13(14

iThe cooling rate required to avoid dendritic solidification (hence, to achieve
masslve solidification) becomes less drastic with decreasing number and potency
f the itcroceneouz nucleation sites. Indeed, with small-droplet dispersions

o r- ios 5o n 5ch--thereby -iso In te-the -xtraneors--nueTcltv-!moW, so, fe T h tie
droplets, the remaining "clean" droplets may be readily hypercooled even on
relatively slow cooling from the liquid state. Clearly, then, such variations
as melt cleanliness and melt superheating, av, become determining factors in
whether massive solidification-wiil--be-ached-nr-not-

-a
< !.p !.! 10 9FS' V F . 1t,I I7 1 S

I'LJ7. -Mas. veSo I d if ca ton antMic rcrvst hl-ity< The massive solidification that takes place on hypercooling not only yields
u rains of uniform composition, but is also capable of producing an extremely

> mall as-solidified grain size--in the range of 1 ,m or less, hence, the term
< Licrocrvstalline. Moreover, unlike cells or dendritic arms, adjacent micro-
f. crystallites tend to have large-angle boundaries because they originate from
U) "D independent nucleation events.

(16)
Calculations have been carried out for the nucleation rate _Gand iro-.ti_

< rate (R) in Al solidification during, fast cooling (10 - 105 K/s), taking the
. 'volved heat of solidification into account . Although fraught with man' uncer-

tainties because of the assumptions and estimates introduced, the calculated
0 cooling curves in Fig. 14 indicate that the undercooling increases with the

o fooling rate and, because of recalescence, the solidification in each instance
W :ompletes itself over a relatively narrow temperature range. If, therefore, the'
w1 ucleation and growth rates are assumed to be constant during the respective
< olidification runs, the resulting grain size can be expressed as d = (R/I) ,

U) ud is plotted in Fig. 15 as a function of cooling rate. These calculations
ire in approximate agreement with the observed grain sizes in splatted foils of
1. However, this may bc fortuitous in view of the way that the critical free

LU L nergy of nucleation (or the solid-liquid interfacial energy) and the tempera-
' ure dependence of liquid viscosity (or diffusivity) were estimated for theseI,- alculati ( 16 . Be t t e r approximntions 'of the nucleation parameters should nc'.

Lt ' )e possible considcrin, the larger-than-uSual undercoolings found more recently

0 :_ Y. using the :mf -droplet technique to diminish the interference of heterogen-
CL otis iueetion

C/- Another route for obtaining microcrystallinity is through crystallization of
Li (18,19)

S he amorphous state '''. For example, on heating an Fe-B glass, the bcc
< _ 'e phase (supersaturated with B) which forms has an extremely-small particle
-O ize of about 0.05 Lim; but the alloy becones quite brittle at this stage.

F- 8. Characterization of Rapidly Solidified Microstructures

To delineate and quantify the fine-scale microstructural features of rapidl.
olldif ied alloys remains a central problem in the field of RSP. Such character

.J zation would Include the quantitative electre;n microscopy and microdiffraction
S ,f cells, dendr'tes, microcrystallites, and d.spersed phases, together with co!:i-

L_ t- ositional profles and interfacial misorientations. The importance of this
ilcrostructural ipproach is generally two-fold: (a) it sheds light on the mode
f solidiflcatl,,n and the operational factors that have generated the structure

inr, ,x;ilritndL and (b) it Provides a sc1entific basis for the structure/proprtt
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trel h iL.h.Thjp :whic. h rmaV emerge ir m RSi' . As It flappen;, tnll L. L ,K I I I [IV r,11i1,

edge-transfer system of Fig. I is presently quite weak!

We shall mention here only two microstrucural studies reported in these

Proceedings. The STEM bright-field image in Fig. 16 (center) shows the

cellular structure of a high-phosphorous austenitic steel after rapid solidifi-'

cation (centrifugal atomizing and convective cooling). Surprisingly, the phase|

u loiKh a-r ns ouoc.io hui -o t rar,t-t o - t he-expec t ejI
crystalline structure of the cells themselves (cf. microdiffraction patterns in

the lower left and right of Fig. 16). The crystalline patterns contain Kikuchi

lines and these disclose very little misorientation between adjacent cells.
According to the e right), there has

_J ben no detectable carbon build-up at the cell boundaries. On the'other hand,
F the microchemical profiles,-a.-ceernedtv X-ray fluorescence spectra with the

LU -STEM and plotted in Fig. 17, reveal appreciable boundary segregation of P, Cr,

< 'and Ni. Undoubtedly, the phosphorus concentration together with the rapid

cooling will account for retaining the amorphous phase. It is evident that

> compositional uniformity, as would be realized from massive solidification, was

I not achieved under the cooling conditions at play.
Ci:

On a different scale, Fig. 18 shows the axistenitic grain-growth character-

_J istics of rapidly solidified and extrusion-consolidated 9Ni-4Co steels, in com-

parison with the same steels conventionally processed (21) . The RSP material

_ tions are that this inhibited grain &_g'r~fitlis probably caused by an extremely

[3 fine dispersion of MnS particles resulting from.the rapid solidification step.

Indeed; one of the noteworthy benefits of RSP may turn out to lie in the dis-

0 tribution control of relatively insoluble microconstituents. There are obvious0
- implications here from the standpoint of mechanical properties that may now be

CO reached in ultrahigh-strength steels.
0

0.
C9. Scientific Challenges

LU
> _ We conclude with a brief list of scientific.challenges in the field of RSP,

L 'which arise either explicitly or implicitly from the foregoing text:

A. A still-deeper understanding is needed of nucleation, growth, seg.re! ation,

W L: and phase sequences under conditions of rapid cooling and various degreos of

o -, ndercooling.
CIO

z - B. New approaches for mapping metastable phase fields are desired.

r,

r -- C. Experimental methods for measuring thermal fields during rapid solidi-

0- fication have to be developed and applied, in conjunction with more realistic
0<

eat-flow models.
_J Z

< < D. Quantitative characterization of the fine-scale microstructures asso-

Z ea .iated with rapid cooling and undercooling is now essential. Special effort

c ) should be given to microcrystalline structures.

>- iL
Z-! tnJ E. Using the amorphous state as precursor to forming novel crystalline
I , ;tructures requires detailed attention.

-4.'
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rIVS Ifit ±,im 'iitals of powder compaction and sub,.euent processing need

particular. study in the light of RSP and the microstructural Changes involved.

C. Virtually untouched thusfar is a basic model experiment approach to

structure/property relationships in RSP materials. This part of the overall

RSP program is likely to become a key element in determining just what aspects

of RSP are actually responsible for Improved performance and, in turn, just

the microstructural features which are really Important.

All of these challenges are closely Interrelated, and offer a timely example

of materials s cie c-anCngin_ .r-

< A tJ/Xc' nm~l -g: n ts _'
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TABLE I

I-

COOLING RATE LIMITATIONS IN RSP

AVG MAX COOL3
HEA1 TRANSFER SEF UL RATE IN LIQUID

COLF F ICIENI SIZE LIMIA,0 Al, Fe, Ni

ATOMIZATIO11 l10 5W,'m - • K 010m -1 5x10 7KIs

MELT SFINNING -10 5  -25 -106

SELF TENDS TO -10 .108OUENCIt!NG INFINITY .
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